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ABSTRACT. For most applications in the control area, the
standard practice is to approximate a nonlinear mathematical
model by a linear system. Since the feedback linearizable
systems contain linear systems as a subclass, we examine the
procedure of approximating a nonlinear system by a feedback
linearizable one. Because many physical plants (e.g. air-
craft at the NASA Ames Research Center) have mathematical
models which are "close" to feedback linearizable systems,
such approximations are certainly justified. We introduce
results and techniques for measuring the "gap" between the
model and its "truncated linearizable part." The topic of
pure feedback systems is important in our study.

I. INTRODUCTION. 1In control design for nonlinear systems,
the most common method is to approximate the nonlinear
system by a linear system using the Taylor series trunca-
tion. Thus, we approximate a nonlinear system by a linear
one and design with vespect to the linear system. Recent
advances have shown that control design can be achieved
using a much larger class (containing the linear ones) of
systems, which are called "feedback linearizable." These
are nonlinear systems which are feedback equivalent to
controllable linear systems [1], [2], (31].
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20 HUNT AND VILLARREAL

Concerning applications, the feedback linearization
approximation for totally automatic flight control is used
in [4] and [5]. 1In [5]) the particular case of the UH~1lH
helicopter is studied, and successful flight test results
are discussed in [6].

The first author and R. Su [7] have examined the pro-
cedure of approximating a general nonlinear system with a
feedback linearizable one by introducing the concept of a
pure feedback system. Every pure feedback system is feed-
back linearizable, and for each feedback linearizable system
there exists a state space coordinate system in which it is
pure feedback (assuming generic controllability assump-
tions). These coordinates are called the s-coordinates and
they are generated geometrically (see also [1] and [8]).

In the s-cocordinates we can guickly ascertain if the system
is feedback equivalent to a linear system or not. If
approximation is necessary, the "pure feedback part" is
easily recognizable.

Suppose we take a nonlinear system in its s-coordinates

1 s = £(s) + .3

(1) s = £ls) + 5y uye(s)

with analytic vector fields f,gl,...,qm on R" (or say an
open set in r" containing the origin), § = g%, and ul,uz,

...,u_ as controls. 1In general, the Taylor series approxi-
matioh of a single input system, m=l1 (we shall analyze

multi-input also), has error O((sl,sz,...,sn)z) in terms
of vector field differences. By O((sl,sz,...,sn)z) we mean
no linear terms in these variables. However, the pure
feedback approximation has error O((s3,s4,...,sn)2). More-
over, if g,{f,g},‘..,(adkf,g) are involutive, 0<k<n-3, the

pure feedback approximation error is O((sa,s4,...,sn_k)2),

and the vector fields in the original system and the pure

feedback part agree when s, = 0, S, = O,.c., Shek = 0. If
k = n-2, the system 1s pure feedback, and no approximation
is necessary.

In approximating a nonlinear system by its pure feed-
back part, it is of interest to compare the state time
responses of the system and its approximation. For this
purpose we propose the Volterra series expansion of Fliess,
Lamnabhi, and Lamnabhi-Lagarrigue [9].

An interesting class of partial differential equations
consists of those failing to be elliptic, but possessing
many desirable properties of elliptic eguations. We con-
sider the possibility of introducing the s-coordinates to
find interesting coordinates for those hypoelliptic opera-
tors studied in [10] and [11].

In keeping with the purpose of this Engineering Founda-
tion Conference, we are presenting an overview of recent
work and our thoughts and ideas about interesting problems
and future directions. This concept is certainly reflected
in the style and intent of this paper.
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Sections IX and III contain definitione, results, and
examples concerning pure feedback approximation for the
single input and multi-input systems, respectively. A
discussion of geometrically generated coordinates for the
study of partial differential equations is the topic of
Section IV. Future research directions are mentioned in
the final section.

II. SINGLE INPUT SYSTEMS. We begin with a single input
system .

(2) x = £(x) + ug{x), . .
where f and g are real analytic vector fields on some ope

. n
set in R ¢

Definition
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1 = fptxpex))
Xy = Fplxyexp.%3)
(3) .

X 4= fn~1(x1,x2,...,xn)

’.(n = fn(xllxzr---lxn) + ugn(xllle"’lxn)
is called a pure feedback system.

Let (f,9], (ad?f,q) = [f,[£,9]1,..., (ad“f,g) =

(f,(adk_lf,g)] denote Lie brackets involving thg vector
fields f and g. By Lyy we mean the Lie derivative of a
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function y with respect to f; i.e. Ley = <dy,f>, <+ >

denoting the duality between one forms and gradients. We
assume for the remainder of this section that g,[f,gl,...,

(adn—lf,g) are linearly independent.

For a pure feedback system (3) we define new state
space coordinates ¥yr¥preree¥y and a new control ¥ by

Y. %

Yo T LYy

Y3 = Le¥p
(4)

¥n © Lfyn—l

v = Lfyn + uLgyn.
We obtain the controllable linear system

¥ =Y,

Y, = Y3
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(s) .

Yp1 = Yn

¥, = v,

Hence system (3) is feedback linearizable or is feedback
equivalent to the controllable linear system (5). In
general, for a feedback transformation we include non-
singular state space coordinate changes (e.g. yl,yz,...,yn),

additive state feedback (e.g. Lfyn), and nonsingular state
dependent input space coordinate changes (e.g. uL yn).

In moving toward general results, the following two
examples should be helpful.

Example 2.2. Oon R3 the system
P 2
%) = x, + x5
_ 2
(6} *2 = %, + x5
. 2

X3 = X + u
is not a pure feedback system. Moreover, there is no

coordinate system onIR3 in which this system appears as a
pure feedback system.

The usual Taylor series approximation about OeR3 is
%) = x,
N X, = X
2 3
Xy = u
and the errcr between the vector fields in (6) and (7) is
2 .
o (xl) ,(x2)2,(x3)2 ). Approximation hy a pure feedback
system
*1 = X,
. _ .2
(8) x2 = x3 + XZ
XB = xf + u

yields an error difference in systems (6) and (8) of
0( (x5)% ). Moreover, the approximation of (6) by (8) is
exact when Xy = 0.

Example 2.3. The system

. L L2 2

xl = x2 g x2 + x3 + u
(9) x2 = X, + sin (xl-x3)

x3 = xs + u

3 ., s A
on R” is not a pure feedback system. IlcwWwever, it is shown
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in [6]) that near the origin there exists state space
coordinates in which we do have a pure feedback system.
Hence a pure feedback system is not invariant under
coordinate changes on state space. Those nonlinear systems
that can be reduced to pure feedback form can be classified,
and, in fact, are the feedback linearizable systems.
Given a general nonlinear system

(2) x = f(x) + ug(x)

with q:[f,g],...,(adn-lf,q) linearly independent, we shall
find a coordinate system {called the s coordinates) so that
i) if the system can be put in pure feedback form, it
appears in this coordinate system,
ii) if the system cannot be put in pure feedback form,
we approximate it by that part of the system in
the s coordinates appearing in the form (3).
For every system (2) we have s coordinates and we can
expand in a power series in these coordinates.
Definjtion 2.4. The pure feedback part of a nonlinear
system 1s that part in the s coordinates which appears in
the form (3).
We introduce the following coordinate system. Solve
in order the following systems of ordinary differential
equations with the indicated initial conditions.

dx  _ n-1 _ O O
3, T {ad” “f£,9) , x(0) = 0 V3 Zg
8 9]
dx n-2
&, 7 e R L x(s0) = x(sp) o
(10) . = E"_’.
. o o
ax = [f,g}l, x(s;,s s ) gs =
ds__y ~ Il XUSpeSprrreeSpope = Q
n -
(x1'52""'sn—2) 2 a
dx  _ _
agr =g, x(sl.szl-..,sn_l,O) =
x(sl,sz,...,sn_l).
By the inverse function theorem we invert (locally) to find
sl(xl,xz,...,xn)
52(x1’x2""’xn)
{11) .
sn(xl,xz,...,xn) .
We set -
X, = (ad""'f,q)
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X, = (ad""?f,q)

2
(12) :
x =
and define n- 9
Sq = {0er"}
(13)

- - n, -
Sk = {s = (51’52""’sn) R : Sh 0, k+1<m¢gn}

for k = 1,2,...,n.
In the s coordinates, usual derivatives can be re-
placed by derivatives with respect to the Xj,j =1,2,...,n.

Theorem 2.517].
(2) assumes the form

In terms of the s coordinates the system

w N (s? i
(14} & = £(0) + igl jgl 11 {ad Xj,f) Sj_1+ uen ’
where s denotes restriction to S, . and e_ is an n
j-1 -1 n

vector whose only nonzerc entry is a 1 in the nth component.

It is very easy to recognize the pure feedback part of
system (14).

For a definition of an involutive set of vector fields
and a statement of the Frobenius Theorem we refer the reader
to [2]. Kk
Theorem 2.6. If g, [f,g9],...,(adf,qg) are involutive, k an
integer, 0<k<n-3, then the vector field difference between
system (14) and its pure feedback part is

O( (S3,84s---,5__)%). If k = n-2, then (14) is a pure

feedback system.
Proof. In the s coordinates, the manifolds Sk are linear

subspaces of R, Moreover, on each S, the vector field Xk

k

takes for form Xk = Té— , or in column vector notation
Sk k
0]
PO
o |
1
x| =0 k™ plrace
v |t
0
Letting
£
f2
f = :
£
n
we find that (ad'x ,f)‘ = -1f,q] ==Xy .
n S s, "Ttis
‘ n-1 n-i n+-1

oo
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Hence —f— 353 afn—z
’ gre ey
asn asn asn

must vanish on sn-l' i.e. when

s, = 0. The lowest power of s, that can appear in
fl’f2""'fn-2 in the expansion (14) is two.
2
Computing we find that (adlxn_l,f) = -(ad”f,q) =
n-2 Sn—2
af af2 afn_3
-X__ « Thus ' reesy must vanish on
n-2| o 3s, 1 IS, 3s _y
n-2
S,-g» i.e. when s _, and s = 0.
We continue this process with (adlxn_zf) yeeey
1 Sn—3
(ad x3,f) . For example, in the last step,
S’)
1 } ot
(ad"X,,f)] = -X , implying that =— must vanish on
3 2 3s
S S 3
2 2
52’ i.e. when S§3 =8, = ... =5 = 0.

Thus it is clear that the vector field error differ-
ence between system (14) and its pure feedback part is at

2
worst Of (s3,s4,...,sn) Y.
We now turn our attention to the assumption that the

set {g,[f,9],..., (adkf,g)} is involutive.
From Lemma 4 of [7] we have that

0 0 0
0 0 . n
SN N B N Tl S IR o | oMk
0 0 1
0 1 [ I
1 * | o o
L] =
where * denotes possible nonzero entries. Now I
- 0™ o
0 Q
X =1 = [f,g) implies f.,f £ _ are ~
n-1 0 9 1772777 "n=-2 o
1 independent of s _, [
* n 3
- o
o7 ’_]
: 2 . . - . 54
Xn_2 = 0 = {(ad“f,g) implies rl,tz,...,tn_3 are
i independent of Sh-1 and S
L=

SI 4O¥Vd JVNIDINO
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+eoay
: where xoéRn is a point at which the system is defined.

9 Our recommended method proceeds as follows: Take in

M order the outputs h = X h = Xoreeer h = X, compute the
X - g _ (adkf g) implies £, ,f £ Volterra series expansions for the system (15) and the

-k 1 £, 17520 T ke are system . -
. ind dent of % = £(x) + ug(x)
i independent o Sn—k+l""'sn' (17} y = h(x)

given by the pure feedback part, and compare the results
for corresponding state time responses.

We examine the effect of the involutivity assumptions
of Theorem 2.6 on the Volterra series (again taking x = s).
From the proof of that result and the successive applica-
tion of the formula

L¢<dh,g> = <dLgh,g> + <dh,(f,q]>

Hence the error between system (14) and its pure feed-
back part is clearly O( (53,54,...,sn_k)2). If k = n-2, we
have a pure feedback system for (14). 1]

It is very important that a method be devised to com-

pare the ?ime responses of the state evolutions of system
(14) and its pure feedback part. Given an initial condition

s in the s coordinates and an input u we examine the g = Lgth + <dh, if,q]> S% E%
difference bgtween the§e time responses by applying a formal 'i we find that v g o Ei
Volterra series expansion. i Lquxl 9, 0<ugk oS
We begin with system (2) and assume that we are in the A v E Q Z
s coordinates (i.e. x = s). To : (18) Lgfoz -0 Ogv<k-1 =~ g:
(2) % = £(x) + ug(x) E .
we add a real analytic output function y = h(x) and obtain : L o
the single input, single output system . a >
% = £{x) + ug(x) , Lo¥ger ~ O E Q
(15) y = h(x). For any initial condition X and with h = Xy h = Xoyreeos =
By the formula of Fliess et.al. [9] the formal = X in turn, the terms in the expansion (16) correspom%é Ea
Volterra series expansion of the system (15) is . k+ X : . . : )
ing to the Lie derivatives in (18) must vanish.
A _tv Since the dynamical equation in (17) is pure feedback,
y(t) = vgothlxo);T + it is feedback linearizable. This implies the set
ot N {g,[f,g],...,(adn_zf,g)} is involutive (see [12] and {2])
! YooV (t-7y? ' Yo ' and L LY 0 0 2
i L,."L L. nix,} F 7 T, 4 L LeXy ' svine
J, Cartr*g © : oJETT s Bt * 7
G u
1 . L < Cuun=2
Lo (19) Lg.,fx2 0, 0<vun=2
;r ;2 s Vi \72 .
P 1.9 0t Lothixg) . :
X Jovo,\)l,vzzo £ g'f g f 0 L x = 0.
(16) g'n-1
V2 Vi VYo As bef i int d h = h = h =
(t=1,) (TZ_Tl) N s before, given a point x, an = %4, = Xyye--h =2
Vv Ty, d(tz)u(Tl)dedrl in turn, the terms in the expansion (16) (with f replaced

by f) corresponding to the Lie derivatives in (19) must
P tor vanish.

The conditions in equation (19) common to those in (18)

P Vg 1 Yk illustrate the importance of the involutivity assumptions
*. 3 J P L 20ve LqL: +o Lol hixg). in improving the errors in the corresponding Volterra
00 o Lo ‘k 9 series expansion differences for (15) and (17). Again, the
. outputs are taker successively to be h = x,, h = %x,,...,
v y N 1 2
- k _, 0 h = x_.
(t 1k) “‘(‘1) n
vk!" JO!_— d\Tkl...u(Il) di...drl
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I11. MULTI-INPUT SYSTEMS. We consider the nonlinear system
(20) = f(x) + T u;9(x)

with f,gl,...,g being reaiaanalytlc vector fields on some
open set in r" containing the origin, and CIRA PYRERNS:

being linearly independent. Assume there exists a set of
positive integers KyeKgressrKe such that:

1 71
i) the set C = (gl,(ad £f,97)r-.-,(ad f,gl),
1 k21 1
gzl(ad f;gz)o‘-~1(ad flgz)l"'lgml (ad frgm)l'~~r
k=1
{ad m f,gm)} spans.Rn on our open set containing
0eR",
ii) the span of cjﬂc = the span of Cj,j =1,2,...,m,

7 Kj-2 Kj-z
where CJ = {ql,.t.,(ad f,gl),gz,...,(ad £,9,)
. gm,...,(ad 3 f,gm)},
css > .
iii) Kl_K2 e me {renumber gl,gz,...,gm if
necessary) .
We £ill a KyXm array by putting from top to bottom
zl—l
1) gl,[f,gl],...,(ad f,gl) in the first column
7yl
2) gz,{f,gzl,...,(ad f,qz) and 0's (if needed)
in the second column

e -1

m .
m) qm,{f,gm],...,(ad f,gm) and 0's (if needed)
in the mth columr.
i, -1
Let X, = {a@ * f,glj, the entry in the last row and first

column,
X2 = the vector field entry in the last row and 2nd
column if it is nonzero, or the vector field entry

Ky=1
in the -l-lth row and lst column if (ad f,gl) is

the only nonzerc entry in the last row.

Xn=gm.

Thus we start at the 'wth

row and first column and move
from left to right amcng the nonzerc entries. Encountering
a zero, we move up on= row ané return to the first column.

The s coordinates are defined by solving in order the
system of o.d.e.'s with initial conditions
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L o=x; 4 x(0) =0
1
g§2 =X, , x(s;,0 = x(s)
(21) :
dx X x(s,,s s 0) = x{(s,,8 s )
ds n ' 1/%2'°°°"®n-1' 1772/ n-1""

and invgrting {locally) to obtain
Sl(xl'xz""'xn)
sz(xl,x
(22) .
sn(xl,xz,...,xn) .
The manifolds
S, = 0OeR

2,...,xn)

(23)

S, = {s=(sy,syr-uuisp) R": s; = 0, k+lgign}
are essential in the following result, which is a multi-
input analogue to Theorem 2.5.
Theorem 3.1[7]. 1In terms of the s coordinates, the system
(20) assumes the form

(s.

= g __1__ i
s = £00) + 5 o5 (ad*xy, £) .
(24) -1
(s )i
n n ; i
¥ —1 1 3
* kenimerl® i1 giea T (@EEGX) s “ken+m,
-1

where ey is an n vector whose only nonzero entry is a 1 in

th
the k component.
We need a definition of pure feedback system for the

multi-input case. Take the “qXmoarray that we constructed
above. For i,k=1,2,... % let n;, = number =£f nonzerc
elements in the (v -1+l\t

i = nl+n2+ ..+nk.
For 3 = 2,3,...,-<1 set

Yj = (xllle'..’xﬁj)

YKl (xl,xz,...,xn).
Denote by gij the jth component of the vector field g5
Definition 3. Definition 3.2. The nonlinear system (20) is a pure feed—
back system if system lf it is of the form

Rom f50y), 5= L2,
X, = f 5o o2
%] = .j(y3>, 3= 24l

U

2

ALIIVAD ¥00d 40
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(25) *j = fj‘yKl)' ]m' BKl

Xj = fj(y'(l) + iélgi] (yKl)uil j-n-m+l,...,n.

_2+1,...,n-m

The block triangular systems found in [4] are a
particular subset of the pure feedback systems.

For a general nonlinear system (20) (perhaps not pure
feedback), we can move to the s coordinates as shown in
equations (24).

Definition 3.3. The pure feedback part of a nonlinear
system (20) is that part in the s coordinates which appears
in the form (25).

Without proof we give a multi-input version of .-Theorem

2.6. The sets Cj are defined in the assumptions following

equation (20).
Theorem 3.4. I1f each of the sets {gl,[f,gl],...,(adkf,gl),

k
9l E.9,1 ..o, (ad"E,g,), qm,[f,gm],...,(adkf,gm)} and c; are
involutive, where k is an integer, 0$k$K1—3, and j is any
positive integer with Kj-Z‘k, then the vector field

difference between system (24) and its pure feedback part

: 2 .
is Of (582+1""’sp) ). Here p is the largest subscript on

a nonzero vector field xi in the (k+1)th row of our K xm

array. If k = K1—2, then (24) is a pure feedback system.

We can compare the time state responses of the system
(24)‘and its pure feedback part by using multi-input
versions of the Volterra series expansions of [9].

IV. PARTIAL DIFFERENTIAL EQUATIONS. Let L be a linear
partial differential operator with real C® coefficients and
for simplicity, assume L is second order. We also suppose
that the principal part of L is the sum of squares of
vector fields on an open set containing the origin in R .

'

We let the principal part of L be 2 4 g? +...+gz,
where . . + 3 m
P g d .
f = al(x) T)—(I + qz(x) T Faeot un(x) T
P n
=8 (x)s + 8 2 =
91 T P Bn ¥ B %) g et B (0 5y
n

Hoooa

9,

3 3 B
n Bml(x) 3;; + Bmz(x)§§; ook B (x) = ,

=4

and the squares mean that an operator is applied twice.

In most studies the operator L is taken to be elliptic,
but we are interested in the case that f can vanish on
certain sets and 9)+G50 -+, are linearly independent with

m<n. We assume the existence of integers Kl,KZ,.-.Km, sets

C, and C., as in section III.
Definition 4.1. An operatcr L is said to be hypoelliptic

if Lu = f, where f is ¢” on an open set U ofiRn, implies

[N
Fion

Wi
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that u is C* on U.

By the results of Hormander [l0] (with extensions due
to Rothschild and Stein [11) we have that our operator L
with principal part f2+gi+...+g: is hypoelliptic since the
vector fields in C are linearly independent.

We remark that the s coordinates in Sections II and III
for our real analytic systems of ordinary differential
equations are also applicable for C” systems. Thus we can
view our operator L in the s coordinates as generated in
section III.

The relationship between controllability of systems of
o.d.e.'s and hypoellipticity of p.d.e.'s has been well
established in the literature. However, perhaps the
special coordinates {(e.g. the s coordinates) and the equi-
valence results from o.d.e.'s have not been applied to
yield nice coordinates and equivalence criteria for opera-
tors like L. For example, the theory of Krener ([8] and
Respondek [13] for state space equivalence of systems when
applied to p.d.e.'s produces the following theorem in the
m=1 (with g=gl) case.

For the second order partial differential

Theorem 4.2.
2

operator with principal part f2+g on Rn, there exist a

(local) coordinate system on R" in which the principal part

appears as (Ax)2+b2, where

A is a real constant n by n matrix
b 1s a constant vector

if and only if [(adrf,g), (adsf,g)] = 0 for 0sr,s<n.

Ax and b denote the coefficients of ;i—, 7%—,...,71—

Here

X
n
In fact, under the assumptions of the theorem, A can

be in rational canounical form and

o

L o=

o

Perhaps we can find "geometrically interesting canonical
forms" for the class of partial differential equations
under consideration.

V. FUTURE DIRECTIONS. The s coordinates of section II and
I1I are generated by solving systems of ordinary differen-
tial equations. For feedback linearizable systems,
symbolic and numerical methods exist in some cases for con-
structing the feedback linearizing transformations (41,
[14], the major task being to find the s coordinates. G.
Blankenship et. al. at the University of Maryland are
developing an expert system Lo construct such transforma-
tions. The process of finding the s cocrdinates for general
systems seems quite difficult. However, for many physical
systems the mathematical model is often "near” pure

J004d 40
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feedback form and "close" to being in the s coordinates.

In this case, a "good" initial guess for the s coordinates
is easily obtained and an appropriate iteration scheme is
recommended. Efforts to handle more difficult nonlinear
systems are presently underway by G. Meyer of the NASA Ames
Research Center.

When an approximation method is used for nonlinear
systems of ordinary differential equations, the ultimate
goal is to achieve close time responses between the
original system and the approximating system. The Volterra
series expansions mentioned in Section III seem ideal. We
shall develop a symbolic manipulation program to generate
and compare Volterra series expansions for nonlinear con-
trol systems and their pure feedback approximations.

An important numerical method in the engineering and
mathematical approach to controlled systems of partial
differential equations is the finite element method. How
do the geometric hypoellipicity conditions of Section IV
influence the use of finite elements? Moreover, one often
does have a system of partial differential equations to
model a physical system, but a computer generated finite
element model. 1Is it possible to find the desired
geometric conditions in these finite element models?
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